Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1386). Services for accessing these data are described at the back of the journal.

References

Akselrud, L. G., Zavalii, P. Y., Grin, Yu. N., Pecharsky, V. K.. Baumgartner, B. \& Wolfel, E. (1993). Mater. Sci. Forum, 133-136. 335-340.
Chirayil, T., Zavalij, P. Y. \& Whittingham, M. S. (1996). Solid State Ion. 84, 163-168.
Chirayil, T., Zavalij, P. Y. \& Whittingham, M. S. (1997). J. Mater. Chem. pp. 2193-2197.
Müller, A., Krickemeyer, E., Penk, M., Rohlfing, R., Armatage. A. \& Bögge. H. (1991). Angew. Chem. Int. Ed. Engl. 30, 1674-1677.
Nazar, L. F. (1996). Personal communication.
Pecquenard, B., Zavalij. P. Y. \& Whittingham, M. S. (1998). Acta Cryst. C54. In the press.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zavalij, P. Y., Chirayil, T. \& Whittingham, M. S. (1997a). Acta Cryst. C53, 879-881.
Zavalij, P. Y., Chirayil, T. \& Whittingham, M. S. (1997b). Z. Kristallogr. 212, 321-322.
Zavalij, P. Y., Whittingham, M. S., Boylan, E. A., Pecharsky, V. K. \& Jacobson, R. A. (1996). Z. Kristallogr. 211, 464.
Zavalij, P. Y., Whittingham, M. S., Chirayil, T., Pecharsky, V. K. \& Jacobson, R. A. (1997). Acta Cryst. C53, 170-171.

Acta Cryst. (1998). C54, 1444-1446

Bis $\{[2,6$-diacetylpyridine bis(2-furoyl-hydrazone)(1-)]dimethyltin(IV)\} transTetrachlorodimethylstannate(IV)

Regina H. P. Francisco, ${ }^{a *}$ Patricla C. Moreno, ${ }^{a}$ M. Teresa do P. Gambardella, ${ }^{a}$ Gerimario F. de Sousa, ${ }^{b}$ M. Beatriz P. Mangas ${ }^{b}$ and Anuar Abras ${ }^{c}$
${ }^{a}$ Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 870, 13560.970 Sao Carlos, SP, Brazil, ${ }^{b}$ Departamento de Quimica, ICC, Universidade de Brasilia, 70910.900 Brasilia, DF, Brazil, and ${ }^{\text {c }}$ Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, 30161.970 Belo Horizonte, MG, Brazil. E-mail: reginap@iqsc.sc.usp.br

(Received 14 May 1997; accepted 21 April 1998)

Abstract

The structure of the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{19} \mathrm{H}_{16}-\right.\right.$ $\left.\left.\mathrm{N}_{5} \mathrm{O}_{4}\right)\right]_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{CH}_{3}\right)_{2}\right]$, revealed the presence of two complexes. One is monocationic and consists of a

heptacoordinated $\mathrm{Sn}^{\mathrm{IV}}$ atom in a distorted pentagonalbipyramidal geometry, with an aroylhydrazone ligand acting as a pentadentate species in the equatorial plane and two methyl groups in axial positions. The other complex is dianionic and has a hexacoordinated $\mathrm{Sn}^{\mathrm{IV}}$ atom at the origin.

Comment

The chelating properties of 2,6 -diacetylpyridine bis(aroylhydrazone)s (aroyl is benzoyl, picolinoyl, salicyloyl, thenoyl or aminobenzoyl) have been investigated and only one complexation mode has been found, i.e. with the aroylhydrazone ligands acting as pentadentate molecules and coordinating through the two enolate O , the two azomethine N and the pyridyl N atoms (Pelizzi et al., 1984; Carini et al., 1989).

The structure determination of bis $\{[2,6$-diacetylpyridine bis(2-furoylhydrazone)(1-)]dimethyltin(IV)\} trans-tetrachlorodimethylstannate(IV), (I), revealed the

(I)
occurrence of two monocationic complexes surrounding a dianionic one, as shown in Fig. 1.
In the cation, $\left[\mathrm{Me}_{2} \mathrm{Sn} \text { (Hdapf) }\right]^{+}$, where Hdapf is $2,6-$ diacetylpyridine bis(2-furoylhydrazone), the ligand in the equatorial plane of the coordination polyhedron is planar, except for the furan groups, which have a dihedral angle of 24.7 (3) ${ }^{\circ}$ between them. One furan ring (C15-C18, O3) makes a dihedral angle of 21.7 (3) ${ }^{\circ}$ with the equatorial plane and an angle of $5.5(3)^{\circ}$ with the other furan ring ($\mathrm{C} 19-\mathrm{C} 22, \mathrm{O} 4$). Both furan rings have atoms with high displacement parameters, especially the C21, C22 and O4 atoms. The presence of a disorder effect in these atoms was investigated, but the calculations did not show any significant improvement of the model.

A selection of bond distances and angles are given in Table 1. Differences can be observed between the bond parameters in both arms of the ligand. The discrepancies in the distances were found in the pairs Sn2$\mathrm{O} 1 / \mathrm{Sn} 2-\mathrm{O} 2$ and $\mathrm{Sn} 2-\mathrm{N} 2 / \mathrm{Sn} 2-\mathrm{N} 4$. The pairs of discrepant angles are $\mathrm{Ol}-\mathrm{Sn} 2-\mathrm{N} 2 / \mathrm{O} 2-\mathrm{Sn} 2-\mathrm{N} 4$ and $\mathrm{N} 2-\mathrm{Sn} 2-\mathrm{N} 3 / \mathrm{N} 4-\mathrm{Sn} 2-\mathrm{N} 3$. These differences occur because during the complexation process, the azomethine N 1 atom loses its proton and the azomethine N5

Fig. 1. View of the title complex, $\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{Hdapf})\right]_{2}\left[\mathrm{Me}_{2} \mathrm{SnCl}_{4}\right]$. Displacement ellipsoids are drawn at the 50% probability level.
atom remains protonated. So, the O 1 atom coordinates in the enolate form, while O 2 is in the keto form. The former has its basicity enhanced compared with the O 2 atom, and the $\mathrm{Sn}-\mathrm{O} 1$ distance is shortened.
This complex seems to be the first case in a series of 2,6-diacetylpyridine bis(aroylhydrazone)s to suffer a partial deprotonation of the ligand. The other complexes, for example, $\left[\mathrm{Et}_{2} \mathrm{Sn}(\mathrm{dapt})\right]$ (Carini et al., 1989), $\left[\mathrm{Cl}_{2} \mathrm{Sn}\right.$ (dappc)]. $\mathrm{H}_{2} \mathrm{O}$ (Delledonne et al., 1987), $\left[\mathrm{Ph}_{2} \mathrm{Sn}(\mathrm{dapa})\right]$ (Pelizzi et al., 1984) and $\left[{ }^{[} \mathrm{Pr}_{2} \mathrm{Sn}(\mathrm{daps})\right]$ (Pelizzi \& Pelizzi, 1980), suffered deprotonation in both arms of the ligand and consequently there are no important differences between the O atoms [dapt is 2,6 -diacetylpyridine bis(2-thenoylhydrazone), dappc is 2,6 -diacetylpyridine bis(2-picolinoylhydrazone), dapa is 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) and daps is 2,6-diacetylpyridine bis(2-salicyloylhydrazone)].

A similar partial deprotonation was observed for trans-diphenyl[2,6-diacetylpyridine bis(thiosemicarbazone)]tin(IV) chloride (Moreno et al., 1997).

The dianionic complex, $\left[\mathrm{Me}_{2} \mathrm{SnCl}_{4}\right]^{2-}$, has the $\mathrm{Sn}^{\mathrm{IV}}$ atom at the origin, i.e. at the inversion center. Its observed bond lengths and angles are in agreement with other published data (Smart \& Webster, 1976; Valle et al., 1988).

There are N5-HN5 $\cdots \mathrm{Cll}(-x, 1-y,-z)$ hydro-gen-bonding interactions among the cations and anions [N5—HN5 $0.82(6)$, N5 \cdots Cll $3.500(5)$, HN5 \cdots Cll $2.69(6) \AA$ and $\mathrm{N} 5-\mathrm{HN} 5 \cdots \mathrm{Cl1} 170(6)^{\circ}$]. These interactions define the packing mode.

The IR spectrum indicated $\nu(\mathrm{CO})=1640 \mathrm{~cm}^{-1}$, practically constant after complexation, compared with $\nu(\mathrm{CO})=1630 \mathrm{~cm}^{-1}$ for the free ligand. It was observed
also that the broad and strong ligand band became thin upon complexation.

The ${ }^{1} \mathrm{H}$ NMR (250 MHz) spectrum in CDCl_{3} showed three singlets in the methyl region occurring at $\delta=$ $6.98,0.99\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}^{1} \mathrm{H}\right)=80.00 \mathrm{~Hz}\right]$ and 0.37 p.p.m. $\left[^{2} J\left({ }^{119} \mathrm{Sn}^{1}{ }^{1} \mathrm{H}\right)=107.7 \mathrm{~Hz}\right.$, due to three magnetically non-equivalent methyl groups bonded in $\mathrm{N}=\mathrm{CO}-\mathrm{CH}_{3}$, $\mathrm{Sn} 1-\mathrm{CH}_{3}$ and $\mathrm{Sn} 2-\mathrm{CH}_{3}$, respectively. According to the literature, the use of the Lockart-Manders equation (Lockhart \& Manders, 1986) for $\left[\mathrm{Me}_{2} \mathrm{SnCl}_{2}\right]^{2-}$ indicates a C-Sn-C angle of 131° (in solution), which is consistent with octahedral $\mathrm{Sn}^{\mathrm{IV}}$ units, with two methyl groups in trans positions.

The complexes bis(2-aminocarbonyl)anilinium dimethyltetrachlorostannate(IV) (Nasser et al., 1984) and bis(2-aminopyridinium) dimethyltetrachlorostannate(IV) (Valle et al., 1988) have identical coordination geometry for $\mathrm{Sn}^{\mathrm{IV}}$. In these cases, the tin-proton coupling constants, ${ }^{2} J\left({ }^{119} \mathrm{Sn}-{ }^{-} \mathrm{H}\right)$, are $92.8\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ and 72.2 Hz $\left(\mathrm{CDCl}_{3}\right)$, respectively.

The best computer fitting of the ${ }^{119} \mathrm{Sn}$ Mössbauer spectrum showed two quadrupole splitting patterns indicative of the presence of two different $\mathrm{Sn}^{\text {IV }}$ sites, which are in a $2: 1$ ratio. This result is in accordance with the structure determined by single-crystal X-ray diffraction. The most abundant site, with isomer shift $\delta=$ $1.29 \mathrm{~mm} \mathrm{~s}^{-1}$ and quadrupole splitting $\Delta=3.96 \mathrm{~mm} \mathrm{~s}^{-1}$, was assigned to the heptacoordinated $\mathrm{Sn}^{\text {IV }}$ atom of the $\left[\mathrm{Me}_{2} \mathrm{Sn} \text { (Hdapf) }\right]^{+}$cation. The other site, having $\delta=$ $1.56 \mathrm{~mm} \mathrm{~s}^{-1}$ and $\Delta=4.11 \mathrm{~mm} \mathrm{~s}^{-1}$, corresponds to the hexacoordinated $\mathrm{Sn}^{\mathrm{IV}^{\mathrm{V}}}$ atom of the anion, $\left[\mathrm{Me}_{2} \mathrm{SnCl}_{4}\right]^{2-}$, and this agrees well with early results reported in the literature (Nasser et al., 1984).

Experimental

2,6-Diacetylpyridine bis(2-furoylhydrazone), H_{2} (dapf), was prepared by refluxing an EtOH solution of 2,6-diacetylpyridine and 2 -furoic acid hydrazide ($1: 2$ molar ratio) for about 1 h . After cooling, the pale-yellow compound (m.p. 518-520 K) was filtered and dried under vacuum over CaCl_{2}. The complex was obtained by treating a hot MeOH solution of H_{2} (dapf) with $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$, dissolved in the same solvent, in a $1: 1$ molar ratio. The resulting mixture was refluxed for 1 h and filtered to give a clear solution which, after cooling and slow evaporation of the solvent, provided the product as yellow crystals, which did not melt up to 523 K . Analysis calculated for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{Cl}_{4} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{Sn}_{3}$: C 39.08, H $3.70, \mathrm{~N} 10.36 \%$; found: C 38.65 , H 3.27 , N 10.32%. The ${ }^{119} \mathrm{Sn}$ Mössbauer spectrum was taken at 80 K using a CaSnO_{3} source at room temperature.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{4}\right)\right]_{2}-$	Mo Kradiation $\quad\left[\mathrm{SnCl}_{4}\left(\mathrm{CH}_{3}\right)_{2}\right]$
$M_{r}=1344.81$	Cell parameters from 25 Monoclinic
$P 2_{1} / c$	$\theta=10-18^{\circ}$
$a=19.464(2) \AA$	$\mu=1.669 \mathrm{~mm}^{-1}$
$b=10.087(2) \AA$	$T=293(2) \mathrm{K}$
$c=13.993(2) \AA$	Prism
$\beta=105.993(9)^{\circ}$	$0.18 \times 0.13 \times 0.08 \mathrm{~mm}$
$V=2641.0(7) \AA^{3}$	Yellow
$Z=2$	
$D_{x}=1.691 \mathrm{Mg} \mathrm{m}$	
D_{m} not measured	

Data collection

Enraf-Nonius CAD-4	3254 reflections with diffractometer
$\omega / 2 \theta$ scans	$R_{\text {int }}=0.023$
Absorption correction:	$\theta_{\max }=26.29^{\circ}$
ψ scan (North et al.,	$h=0 \rightarrow 24$
1968)	$k=-12 \rightarrow 0$
$T_{\text {min }}=0.762, T_{\text {max }}=0.875$	$l=-17 \rightarrow 16$
5519 measured reflections	3 standard reflections
5357 independent reflections	frequency: 120 min
	intensity decay: 5.7%

Refinement

Refinement on F^{2}
$R(F)=0.038$
$w R\left(F^{2}\right)=0.068$
$S=1.032$
5357 reflections
331 parameters
H atoms: see below
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.661 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {max }}=0.661 \mathrm{e}^{-} \AA_{\text {min }}=-0.511 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0085 P)^{2}\right.$
$+7.1578 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$

$\mathrm{Sn} 1-\mathrm{Cl}$	$2.108(6)$	$\mathrm{Sn} 2-\mathrm{O} 1$	$2.227(4)$
$\mathrm{Sn} 1-\mathrm{Cl1}$	$2.609(2)$	$\mathrm{Sn} 2-\mathrm{N} 2$	$2.263(5)$
$\mathrm{SnI}-\mathrm{Cl} 2$	$2.623(2)$	$\mathrm{Sn} 2-\mathrm{N} 3$	$2.314(4)$
$\mathrm{Sn} 2-\mathrm{C} 3$	$2.098(6)$	$\mathrm{Sn} 2-\mathrm{N} 4$	$2.446(4)$
$\mathrm{Sn} 2-\mathrm{C} 2$	$2.104(6)$	$\mathrm{Sn} 2-\mathrm{O} 2$	$2.474(4)$

$\mathrm{Cl}-\mathrm{Sn} 1-\mathrm{Cl1}$	$87.5(2)$	$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{N} 3$	$92.1(2)$
$\mathrm{Cl}-\mathrm{Sn} 1-\mathrm{Cl} 2$	$88.0(2)$	$\mathrm{N} 2-\mathrm{Sn} 2-\mathrm{N} 3$	$69.6(2)$
$\mathrm{Cll} 3 \mathrm{Sn} 1-\mathrm{Cl} 2$	$90.89(5)$	$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{N} 4$	$85.3(2)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{C} 2$	$166.0(3)$	$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{N} 4$	$87.6(2)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{Ol}$	$90.2(2)$	$\mathrm{N} 3-\mathrm{Sn} 2-\mathrm{N} 4$	$66.0(2)$
$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{O} 1$	$90.9(3)$	$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{O} 2$	$83.0(2)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{N} 2$	$97.3(2)$	$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{O} 2$	$83.0(3)$
$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{N} 2$	$96.2(2)$	$\mathrm{Ol}-\mathrm{Sn} 2-\mathrm{O} 2$	$90.1(2)$
$\mathrm{O} 1-\mathrm{Sn} 2-\mathrm{N} 2$	$70.1(2)$	$\mathrm{N} 4-\mathrm{Sn} 2-\mathrm{O} 2$	$64.19(14)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{N} 3$	$96.1(2)$		

The fractional atomic coordinates of the HN5 atom were determined in a difference Fourier map. calculated after convergence of the refinement with all the other atoms. The positions of all the others H atoms were calculated and assigned an isotropic displacement parameter of $0.076 \AA^{2}$.

Data collection: CAD-4 Softuare (Enraf-Nonius, 1989). Cell refinement: CAD-4 Soffuare. Data reduction: SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: DOS 6.0 VAX editor.

This work was sponsored by grants from FAPESP, CNPq, FINEP and CAPES, which are gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1125). Services for accessing these data are described at the back of the journal.

References

Carini, C.. Pelizzi, G.. Tarasconi, P.. Pelizzi, C.. Molloy. K. C. \& Waterfield, P. C. (1989). J. Chem. Soc. Dalton Trans. pp. 289-293.
Delledonne, D., Pelizzi, G. \& Pclizzi, C. (1987). Acta Crṛst. C43. 1505-1509.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Cnstal Structure Solution. Computing in Cnistallography. edited by H. Schenk. R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi. pp. 64-71. Delft University Press.
Johnson, C. K. (1965). ORTEP. Repon ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lockhart, T. \& Manders, W. F. (1986). Inorg. Chem. 25. 892-895.
Moreno, P. C., Francisco, R. H. P., Gambardella. M. T. P.. Sousa, G. F. \& Abras, A. (1997). Acta Crist. C53. 1411-1414.

Nasser, F. A. K., Hossain, M. B.. van der Helm. D. \& Zuckerman, J. J. (1984). Inorg. Chem. 23, 606-609.

North, A. C. T., Phillips. D. C. \& Mathews. F. S. (1968). Acta Cryst. A24, 351-359.
Pelizzi, C. \& Pelizzi, G. (1980). J. Chem. Soc. Dalton Trans. pp. 1970-1973.
Pelizzi, C., Pelizzi. G. \& Predieri. G. (1984). J. Organomet. Chem. 263, 9-20.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Cnistal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Smart, L. E. \& Webster. M. (1976). J. Chem. Soc. Dalton Trans. pp. 1924-1926.
Valle, G.. Gonzalez, A. S., Ettorre. R. \& Plazzogna. G. (1988). J. Organomet. Chem. 348. 49-53.

